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CHAPTER V 

Some Numerical Methods for 
IDiscontinuous Flows in Porous Media 

PHILLIP COLELLA, PAUL CONCUS, AND JAMES SETHIAN 

1. Introduction. The numerical modeling of fluid displacement through a 
porous medium has received increased attention in recent years. Interest has 
been stimulated by the development of enhanced recovery methods for obtaining 
petroleum from underground reservoirs and the advent of larger. higher-speed 
computers. A common feature found in most important recovery methods is the 
propagation of fronts that are st~ep or discontinuous. Examples of such fronts are 
those involving different tluid~. such as in the waterflooding of a petroleum 
reservoir. or between regions of difTeri'1~ concentrations, as in some tertiary 
recovery processes. Even though steep r ~ts may not be present initially, they 
can develop naturally in time as a consequence of the inherent nonlinearity: of 
fluid displacement in porous media. ; 

Accurate following of steep fronts numerically can pose substantial difficuhy 
for conventional discretization n:.ethods. which rely on underlying assumptions 
on sn~oothness of solution~. In an attempt to overcome these difficuJties, a study 
was initiated several years at;o in the Mathematics Group of the Lawref'ce 
Berkeley Laboratory to develc p high-resolution numerical methods for solvi~g 
the equations of flow through a porous medium. A discussion of this study is 
given here with emphasis on the details of newer directions being pursued. 
Included as well is some introductory background material given in an earlier, 
less-detailed review [14]. 

OUT study centers on numerical methods that incorporate analytical informa
tion concerning the propagation of discontinuities in a flow. Such methods have 
been effective in treating hyperbolic conservation laws arising in gas dynamics 
and can be adapted in many cases to the equations of porous flow. The initial 
parts of the study focused on the random choice method, a method that can track 
solution discontinuities sharply and accurately in one space dimension. The 
method represents a solution by a piecewise constant approximation and uses 
Riemann problem solutions and a sampling procedure to advance in time. As a 
first step this method was adapted to solving the Buckley-Leverett equation for 
immiscible displacement in one space dimension. Extensions to more than one 
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space dimension were carried out subsequently by means of operator splitting 
(§~). 

Because of inaccuracies that may be introduced for some problems at 
discontinuity fronts propagating obliquely to the splitting directions, investiga
tions of alternatives were initiated for multidimensional cases. A front tracking 
method for multidimensional problems was developed based on the SLIC scheme 
introduced in [26J. The method assigns to mesh cells a value representing the 
fraction of the cell lying behind the front, and the cell fractions are then 
appropriately advanced at each time step (§4). Two other methods, currently 
under investigation, are a higher order version of Godunov's method that utilizes 
piecewise linear rather than piecewise constant segments for constructing conser
vative fluxes (§5), and a method based on an improved splitting procedure. which 
will be reported in [9]. 

2. Equations for immiscible displacement. We consider the simultaneous, 
immiscible flow of two incompressible fluids in an isotropic. homogeneous porous 
medium. We do not include the effects of capillary pressure. thus propagating 
fronts will be sharp. For a region whose interior is free of sources and sinks (i.e., 
injection or production wells), one is !cd to the equations [281 

(2.1) 

(2.2) 

(4. 3) 

as . a 
i ¢-a + q. "/(s) - "Y-a g(s) - 0, 
i , z 

;" . q - Q, 

~ q - -A(S)[~p - 'Yg(s)e,.]. 

In the above equations s(i~ t). 0:5 s :;; I. is the saturation of the wetting fluid 
f (fraction of available pore volume occupied by the fluid). The saturation of the 

nonwetting fluid is then 1 - s. The independent variables x and / are space and 
time, respectively, and q(x, I) is the total velocity (sum of the individual velocities 
of the two fluids). If gravity is present it is assumed to act in the negative z 
direction. with tit the unit vector in the positive z direction. The quantity p(x,t) is 
the excess over gravitational head of the reduced pressure; here the reduced 
pressure is the average of the individual phase pressures less the gravitational 
head. The quantity Q represents the sources and sinks of fluid on the boundary of 
the domain. and ¢ is the porosity, which will be assumed constant. The quantity 
'Y. the coefficient of the gravitational term, is the product of the acceleration due 
to gravity times the density difference between the wetting and nonwetting 
phases. 

Equation (2.l) is the Buckley-Leverett equation. which for a given q is 
hyperbolic. Equation (2.2) is the incompressibility condition, and (2.3) is Darcy's 
law. For a given s. (2.2), (2.3) is elliptic. 

The functions of saturationJ{s), g(s), i-.(s), and g(s) can be expressed in terms 
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of the empirically determined phase mobilities (ratios of permeability to viscosi
ty) All and A", of the nonwetting and wetting fluids. For immiscible displacement 
these are 

f(s) = A .• -/'A, 
g(s) = A,JA, 

g(s) ""' A,J. 

A(S) - A,. + A .... 

The quantities/, g, and g are nonnegative, and A is positive. 
A distinguishing feature of the immiscible displacement equations is thatfand 

g are nonconl/ex. Typically f has one inflection, as depicted for a model case in 
Fig. I, and g has two, as depicted in Fig. 2. Thus weak solutions may have 
combinations of propagating shock and expansion waves in contact. 

Attempts to solve (2.1). (2.2). (2.3), subject to appropriate boundary condi
tions, by standard discretization methods such as finite difference or finite 
dement methods can give rise to substantial difficulty. Inaccuracies may arise 
near a moving front. or an incorrect weak solution may be obtained. To 
circumvent these difficulties, the first phase of our stupy initiated an attempt to 
adapt the random choice method to soiving problems of fluid displacement in 
porous media. . 

3. Random choice method. The random choi~~' method. which was formu· 
lated originally for solving the equations of gas dynamics. is a numerical method 
incorporating the accurate propagation of solution discontinuities. It is based on 
a mathematical construction of Glimm [17] that was developed into a practical 
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and efficient computation algorithm by Chorin [6]. [7]. It was first adapted to 
porous flow problems in (IS). and applied extensively in [181 and related papers. 

For a single nonlinear conservation law 

(3.1) 
as' a 
at + az I/;(s) - 0, 

to which (2.1) reduces in one space dimension. the random choice method 
( advances a solution in time as follows. The solution s(z,!It) at time til is 

represented by a piecewise constant function on a spatial grid of spacing .6.z, with 
the function equal to sf - s(z;, lit) in the interval Zi - Y21lZ < z :i Z; + V11lz. An 
exact solution of (3.1) is constructed analytically by the method of characteris· 
tics for this piecewise constant initial data by solving the collection of Riemann 
problems: (3.1) with initial data 

(3.2) 
z S Zi + 1/2IlZ. 

Z > Zi + V21lz. 

As long as the time increments lit satisfy the Courant-Friedrichs-Lewy condi
tion (.6.// Ilz) • max!I/;'(s)1 < 1/2 (or <1 for forms of the method using half time 
steps on staggered grids), the waves propagating from the individual mesh·point 
discontinuities will not interact during a given time step. This permits the 
solution of (3.1) to be obtained during the step by joining together the separate 
Riemann problem solutions . 
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The above technique of obtaining the exact solution is common to other 
methods, such as Godunov's method. What distinguishes the random choice 
method is that the piecewise constant representation of the solution s is 
constructed at the new time by sampling the exact solution at a point within each 
spatial interval. In this way moving discontinuities remain perfectly sharp (since 
no intermediate values are introduced by the method), at the price of introducing 
a small amount of uncertainty into the position of the waves. 

The sampling procedure for the random choice method should be equidistri
buted to yield an accurate representation of the solution [7], {I OJ. The determin
istic van def Corput sequence proposed in [1 OJ has been found to be particularly 
well suited for the method. The mth number 8", in the basic sequence is given by 

AI 

8m - I: i12-(k+l), 

1-0 

where the binary expansion for m is 

Extensions for use with multidimensional problems· are given in [10]. 
The random choice method is essentially first clf.der and is observed to give 

good results for one-dimensional problems. · 

3.1 Riemann problems. The practicality of the random choice method 
depends on being able to solve the Riemann problems efficiently. For the 
immiscible displacement problem the fu~ction t./!(s). which is a linear combina
tion of f(s) and g(s), has either one or two inflections. depending on the relative 
magnitudes of q and "Y. If the gravity term "Yg(s) in (2.1) is small compared with 
the tr~nsport term qf(s), then there is only one inflection in I/;(s) (as inf(s) in 

I/!{s) 

FIG. 3. 
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166 MATHEMATICS OF RESERVOIR SIMULATION 

Fig. I), for which case the Riemann problem solution is given in [15J. For the 
case of two inflections in 'I/I(s) the solution is given in [l]. [4]. and for a special 
case in [29]. 

A typical example for which two inflections occur is depicted in Fig. 3, which is 
taken from [4]. The Riemann problem solution is obtained by applying the 
following general conditions, which must hold along any curve of discontinuity of 
s(z. t); Let s_ -= lim!_t. s(z. t) and s + .... lim:_z • s(z, t) be the limiting values 
from the left and right, respectively, at a discontinuity. Then there must hold (see 
[24]. (27)): 

(i) Rankine-Hugoniol jump condition. The curve of discontinuity is a 
straight line with slope 

(ii) Generalized entropy condition. For any s between s .. and s _ there 
holds 

For the case s7 - 0 and S~ .. I ~ I, one obta:rls the solution of (3.n, (3.2) 
delJicted in Fig. 4. Figure 3 depicts ~he corresponding concave hull of 'I/I(s), whose 
points of tangency with 'I/I(s) dete~mine the shock propagation speeds. The two 
shocks shown in Fig. 4 propagate" to the left and right, respectively, from the 
initial discontinuity. The charac~eri~tics from the left of the discontinuity 
intersect the leftward travelling s:,ock. and those from the right intersect the 

dz 
(it = 

s=O s:: I 
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FIG. 4. 

rightv 
whose 

Fm 
[1] an 

3.2, 
probl( 
the fo 
sional 
solve ~ 

soluti. 
q fixe( 

Ad 
[4J b: 
solves 

when 
Ah 

probl. 
arivar 
modH 
over 
spac 

4. 
folic 
are, 
split 
splitt 
achie 
expli( 
ofpa: 

Al 
follm 
parti( 
throu 
disco 

<~~~--~-------------------------------~ ~~";"":'.::" .. :.:~~ 



he 
ial 

:is 
he 
of 

les 
ice 

:a 

~rc 

. 2) 
)SC 

wo 
_he 
ity 
.he 

NUMERICAL METHODS FOR DISCONTINUOUS FLOWS 167 

rightward travelling shock. Between the two shocks lies an expansion wave l 

whose fan of characteristics emanates from the initial discontinuity. 
Further discussion of the Riemann problem for these equations can be found in 

[1] and [4]. 

3.2. Operator splitting (or multidimensional problems. For a one-dimensional 
problem, the system (2.1). (2.2), (2.3) reduces to the single conservation law of 
the form (3.1), since. in this case, q is constant in the interior. For a multidimen
sional problem, a straightforward technique for solving (2.1), (2.2), (2.3) is to 
solve successively (2.2), (2.3) for p (and q) taking s to be fixed at its approximate 
solution for the current time. and then to advance (2.1) one time step considering 
q fixed. to obtain an approximate solution for s at the new time. 

Advancing (2.1) is carried out using the random choice method in [1], [21. and 
[4] by means of operator splitting. SpecificalJy. for two space dimensions, one 
solves successively the one-dimensional problems for s 

as a 
4> at + qJ: oxl(s) - o. 

as a a 
4> at + q: azl(s) - l' az !iV) - O . 

where q - (qit t q:). Numerical examples can be found in [l]. [2], and [4]. 
Although this technique is efficient and gives acceptable results for many 

problems of interest, it can be inaccurate for some cases in which a shock front is 
advancing obliquely to the splittirtg 'dri:ections (for example, see (161). A 
modification of the split random choice method currently under development 
overcomes these difficulties and has been shown to give very good results for two 
spate dimensions [9]. 

4. Front tracking in more than one dimension: SLIC. If one is interested in 
following the' motion of a front in more than one dimension, several techniques 
are available. One method, mentioned above, is to use the technique of operator 
splitting to solve appropriate one-dimensional problems along each of the 
splitting directions in succession until the full multidimensional solution is 
achieved. In this technique, the location of the front. as such. is never used 
explicitly. Instead. the movement of the front is implicitly contained in the values 
of particular variables. in our case, the saturation. 

Alternatively. one could choose to concentrate on the line of discontinuity and 
follow its motion in time. A standard technique is to spread a coHection of marker 
particles along the front at the initial time in such a way that interpolation 
through these points provides a good approximation to the initial line of 
discontinuity. From this approximation to the front and the advection velocity 
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provided by the hyperbolic equations being solved, the direction and speed of the 
front at each marker particle are determined. Each particle is moved, and 
interpolation provides the position of the front at the updated time. Of course. the 
success of the technique relies heavily on the accuracy of the interpolation. Since 
the direction of motion for each marker particle is obtained, in part, from the 
orientation of the front at that point, small errors in this orientation can lead to 
substantial error in the position of the front. In addition, as the marker particles 
move, they can spread apart as well as bunch together, and it is not a simple task 
to provide an accurate interpolation to the position of the front from such a 
collection of points. A discussion of some of the problems inherent in these 
methods when applied to flame propagation may be found in [31]. 

As a third alternative. a front tracking method can he based on a "volume of 
fluid'" construction, such as the Simple Line Interface Calculation (SLIC) 
developed in [26}. In this technique, a grid is imposed on the domain and each 
cell is assigned a number corresponding to the fraction of that cell located behind 
the front. These cell fractions are updated during each time step. in accordance 
with the appropriate differential equations. The position of the front is approxi
mated by a local construction in each cell, based on neighboring cell fractions. 
This technique does not rely on a gfobaJ interpretation of the front. and thus can 
be highly effective in situations in which tire front contains fingers and cusps. 
This method of tracking moving discontinuous fronts is an integral part of a 
name propagation algorithm developed in [8], shown to be a natural construction 
from the point of view of the theory or flame propagation in [31], and used with 
highly successful results in [32] to model turbulent combustion. Such a method 
was used in [25] to follow shock discontinuities in Burgers' equation and the 
equations for two-phase JX>rous fio ..... In the rest of this section, we discuss SLIC 
and the application of this type of ;10nt tracking method to petroleum reservoir 

C simulations. 

4.1. The method. We wish to follow the motion of a front in two space 
dimensions and assume for now' that the velocity at the front is known at all 
times. We impose a square grid Ii, j) of uniform mesh size on the domain, and 
assign a number 0 :i h.i :; I to each Cent corresponding to the fraction of fluid in 
that cell that is located behind the front. In this discussion, we identify the fluid 
behind the front as "'black" and the fluid ahead as "white:' Thus, a cell i,j has 
volume fractionh.j - 1 if it is entirely behind the front (black), a volume fraction 
h.j = 0 if it is entirely ahead of the front (white), and h,i between 0 and 1 if it 
straddles the front. At any time step, an approximation to the front can be 
constructed from this array of volume fractions. This interface is advanced under 
the given velocity field by updating the fractions in the mesh cells in the following 
manner: The motion of the front is split into a sweep in the x direction with 
velocity V:n followed by a sweep in the z direction with velocity v:, where the 
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F1 F2 F3 

F. til Fs 

F6 F7 Fa 

FIG. 5. 

velocity of the front is assumed to be (Vx • VI)' For each of these one-dimensional 
problems, an interface that represents an approximation to the front is drawn in 
each cell for which 0 <1,'1 < 1. The orientation of the interface depends on the 
value of J,.} in both the cell and its neighbors. The "black" fluid is then advected 
in the x(z) direction with velocity vx(vt ). and the new J,./s are created, approxi
mating the front advanced a distance vx~t(vl11). where ~t is the time step. 

The original algorithm used line segments parallel to either the x- or z-axis to 
construct the local interface required for the one-dimensional sweeps. Numerous 
improvements have been made since. Trapezoids were added to the list of 
possible interface shapes, as well as thin slices of fluid to accommodate fingering. 
Since interchanging the order of the sweeps ',¥oduced different results, the 
que$tion of symmetry arose. One possible solution, of alternating the order of .~he 
sweeps, was found to be ineffective. Instead, both contributions were perforrrled. 
and the new volume fraction in each celt was taken to be the maximum of the two 
results. This preserved symmetry by removing a bias towards the first sw~ep 
present in earlier calculations. "." ~ 

In applying this algorithm to porou:;, flow problems. interfaces oblique to ;he 
grid directions were al10wed in [25]. As an example of such an interface. consl~r 
a: cellh.j with neighbors Fl' F2 , Fl. F4 , Fs. F6, Fl. and Fg• as in Fig. 5. We assume 
that the sweep is in the horizontal direction to the right, i.e.,tl,l' > O. and assume 
that, for example. F. =I: 0, F2 '* O. F1 '* 0 and Fs "'" O. We are interested in 
establishing the location of the front within the center cell. From these volume 
fractions, we see that ftuid lies on the top, bottom, and left, and thus assume that 
the front Jies roughly parallel to the z-axis, as in Fig. 6. The slope of the interface 

FIG. 6. 
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is determined from the ratio of the amount of fluid above to the amount of fluid 
below, namely. 

and the requirement that the area of the trapezoid equalj;.j. i.e., 

I/~h{xli + Xd) = h '!i,j • 

where XII and Xd are the length of the sides of the trapezoids as in Fig. 6, and h is 
the size of the mesh. To advance the front under the time step AI, we must move 
the sloped interface under the appropriate velocity field. Let VIe Vb) be the 
horizontal velocity at the front along the top (bottom) of the center cell. We 
translate the nodes of th'c trapezoid as follows 

x:+ 1/2 - x~ + VI • 6.t, xi+ 1/2 
- xj + Vb • ill • 

where the superscript n + 1/2 refers to the result afler the first sweep with time 
step D.l. There are three cases, depending on whether or not the trapezoid has 
moved into the right cell. In Case 1 (Fig. 7a), the front remains in the center cell. 
and the updated value ofj;.j is easily seen to be "r. . 

/
"+1/,2 _ Ilh(XIl+I/2 + ,xlI+I/2) ': 
I.J I /2 Ii d· , 

In Case 2 (Fig. 7b), one leg of the trapezoid has moved to the cell on the right. 
Letting D.h.j be the amount of fluid that has entered the ceJ) on the right, the 
center cell is updated to . 

/
,:+112 -"h( hl/2 + H1/2) A,r 
t.} -[\~ XII Xli - W:/i,j' 

witHe the cell on the right becomes 

J
H1 /2 J" A r {.I.j ... j+l.j + L.l.Ji.j· 

In Case J. both legs of the trapezoid have moved into the right cell (Fig. 7c), and 

/
,:+1/2 = 1 
I,) , 

while 

J "+1/2 In r 
I+IJ = i+l.j + 6.Ji.j • 

This concludes the one-dimensional sweep for the center cell. The full set of 
possible interfaces is shown in Fig. 8; the reader is referred to (25] and [32J for 
details. 

Two points are worth mentioning. First. for any given cell, the orientation of 
the interface in the x sweep may be different from that constructed in the z 
sweep. Second, for the majority of cells, the value of h.i and the neighboring/;js 
will be either all 0 or I, implying that the front is not nearby. In these cases, no 
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FIG.7a. FIG.7b. FIG.7c. 

calculations are required, since the value of .h,i will not change during the 
movement of the front. Judicious programming can avoid these situations 
altogether. reducing the calculation from O(N2) operations to O(N) operations, 
where N 2 is the number of cells. 

4.2. Algorithm for flow through porous media. We now summarize the 
algorithm presented in [25] for approximating the solution to problems of flow 
through porous media. The general idea is to use the above front tracking method 
to follow the discontinuity in s. At each time step. values for the pressure and 
velocity are obtained from s. This velocity fie:d is used, together with the front 
tr:!.cking method, to move the line of discontinuity and update the saturation 
parameter. 

We consider solving (2.1), (2.2) and (2.3) for the case 'Y - 0 (gravity effects 
absent) for porous flow in a domain n. For convenience. we absorb the porosity 4> 
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into the other variables to obtain 

(4.1) 

(4.2) 

(4.3) 

as at + q . Vf(s) = Ot 

V. q "" Q, 

q - -X(s)Vp , 

Let s" be the value of the saturation at time step nil!. We assume that s7,j is 
known at the nodes of a square grid {i,j} imposed on n. The pressures P~j are 
taken at the same grid points. and the velodties q:c and qz will be evaluated at the 
midpoints of the sides of the cell (see Fig. 9). 

We shall describe the algorithm used to obtain s7.j' from s7. j • With s7,j known. 
first p7,j is calculated at the grid points. This is accomplished by substituting (4.3) 
into (4.2) to obtain an expression involving only p and Xes). A finite difference 
approximation to this expression is then solved, using the known values of s7.1 to 
evaluate the necessary coefficient values for X. Once the values of the pressure P~j 
have been obtained. a finite differenc~ approximation to (4.3) can be used to 
produce the velocity field q" - (tt. q';). ; 

To move to the next time step, the value of th~,~aturation is updated according 
to (4.1). We use operator splitting to update $: in two steps; a sweep in the x 
direction followed by a sweep in the z direction. The technique for solving -the 
one-dimensional equation rests on our ftont tracking algorithm. Given the array 
of volume fractions!;}! we construct an approximation to the front, as described 
in the previous section. The Rankine-Hugoniot condition (§3) and the values of 
qn and sn provide the advection speed at the front. We compute the advection 
speed for all the cells of the front, and transport the black fluid to obtain the new 

t if.J 1/2, Since we now know both the oid and new positions of the front, we can 
compute the values of sn+ 1/2 away from the front (the continuous parts) by any 
one of a variety of methods. In [25], both Godunov's rTiet'hod and a random 
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choice method are used to advance the solution. Given SH 1/2, we complete the 
iteration by executing the sweep in the z direction, yielding the fully updated 
S'I+I, 

4.3. Numerical results. In [25L numerical experiments were carried out for n 
the unit square, with Q corresponding to a source at (0, 0) and a sink at (1, 1), 
both of unit strength. We describe those experiments here. On an the normal 
component of q and the normal derivative of s are both taken to be zero. Initially, 
the square is occupied entirely by "white" fluid to be displaced (i.e., sO), 
except at the point (0,0) at which s ... I. A 40 x 40 grid was used, with time step 
small enough so that during one time step, (i) the front can travel at most one cell 
length and (ii) the waves propagating from individual mesh-point discontinuities 
do not intersect. At t - 0, the square is filled with fluid to be displaced. A source 
is placed at (0,0) and a sink at (1. I), both of unit strength. 

For the first test problem, the functions 

S2 

J{s) - 52 + er( I _ S)2' . A{s) .. S2 + a(1 - S)2 

were used. This corresponds to a phase mobility proportional to the square of the 
saturation, and is representative of water flooding~t a petroleum reservoir. The 
quantity a is the ratio of the viscosity of the wetting fluid to that of the 
nonwetting fluid (such as that of water to oil, respectively). Solutions ;were' 
calculated for several values of a, corresponding to mobility ratios M at the front 

t 
,~. 

FIG. 10. 

\ 
•• 
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FIG. 11. 

in both the stable (M < l) and the unstable (M > I) range. Figure 10 shows the 
results of a calculation with the above algorithm. wi~h a value of M - .845. the 
front rer.1ains stable, as it shou~. and perturbations die out. In Figure 11 f the 
same equations are solved with M - 1.397. a value in the unstable range. In this 
case, waves develop in the interface and fingering occurs. 

The second test problem is one for miscible displacement. For this problem 

f(s) - s. ;,A(S) - S + M- 1
/

4 (l - S}4 
... 

&vere used. In Fig. 12 we show the results of a calculation with M - 2. well into 
the unstable range. The initial and boundary conditions are the same as in the 
previous case. The front is unstable, and a "fingering" effect is. clearly visible. 

5. Godunov-type methods. For a large class of physically interesting cases of 
flow in porous media (e.g., incompressible flow with negligible capillary 
pressure). the equations describing the flow can be written as a system of 
nonlinear hyperbolic cons~rvation laws for the saturations. with an elliptic 
equation for the total velocity. Solutions to the hyperbolic equations can develop 
discontinuities. even in cases in which none exist in the initial data. Consequently, 
it is necessary to use numerical methods that can calculate accurately both 
continuous and discontinuous solutions. A commonly used class of methods for 
hyperbolic conservation laws is that of conservative finite difference or finite 
elements methods. Conservative methods are ones for which the difference 
equations for the saturations are in discrete divergence form, guaranteeing that 
the total amount of each component of the fluid is conserved exactly. If the 
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FIG. n. 

method is in discrete divergence form. then discontinuities are constrained to 
propagate, at least in some average sense. at the correll velocity. 

One dass of conservative finite difference techniques for calculating discontin- l' 

uous solutions to systems of hyperbolic conservation laws was introduced by 
Godunov [19], [20} for gas dynamics. Godunov's method is a generalization to 
systems of nonlinear equations of the upwind differencing method for scalar 
advection equations. As such, it is generally too diffusive to represent discontinui
ties accurately, However, the higher order 'extensions of Godunov's method. first 
introduced by van Leer and then developed by a number of authors (for a review, 
s~e [22], [36]) have been demonstrated to be effective in calculating complicated 
time-dependent discontinuous solutions to the equations of gas dynamics in two 
space dimensions. Consequently, there is reason to believe that these methods 
will prove useful in ca]culating solutions to multidimensional problems arising in 
petroleum reservoir simulation. 

We shall discuss the Godunov methods only for the case of one space variable. 
The one-dimensional form of these methods has been successfully used in 
multidimensional problems by means of operator splitting [51. Multidimensional 
methods that do not require operator splitting are currently under investigation . 

I 
5.1. Scalar equations. We consider first Godunov's method for the scalar 

equation (3.1). We assume that at time t 1l we know s7, the average of s across 
each mesh interval [(j - Ij2)llz. (j + Y2)llzl. 

n I 10 + 1/2
).1.:' ( ") d Sj = - S z, t z. 

.l= (j-l/'2).l: 
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s 

L, 

I 
Ii .. 3/2).1: sj_ 1 Ii .. 1I21.1z 'i Ii + t12)Az sj + 1 

FIG. 13. 

In Godunov's method, we interpret the averages s; as giving piecewise constant 
interpolation functions of the solution in each mesh interval (Fig. 13) 

(5.1 ) s(z. til) =- sj, 

Since we know the solution to the Reimann problem, we can solve the initial 
value problem given by (5.1) exactly (Fig. 14), for a time 111 sufficiently small ~o 
that the waves from successive Riemann problems do not intersect. We denote 
the exact solution by s:(z. I). In order to obtain srI, the average of the solution 
at the new time. we average s:(z, I) over thejth mesh interval (Fig. 15) . 

(5.2) 
t 

...n + J 1 1 (J .. 1/2).1% /I ( " A ) d 
~ j .. - S r z. t + ut z. 

A:z (j-lj2).1:z 

If the solution has complicated spatial structure, the evaluation of the integral in 

t 

L. 

Ii - 3/2).1z Ii - 1l2l.iz Ii + 1/21Az 

FIG. 14. 
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(5.2) can be difficult. By applying the divergence theorem to 

J {J+I/2)Az It'+!M (as + al/l) dt dz, 
(j-I/ll.u t' at az 

we obtain a difference formula for s'r l
• 

177 

(5.3) sri - sj - ~ [1"+Al (..J;(s;«j - 1/2)4J. t» - tJ;(s:«j + 1/2)a.Z, I») dt. 
a.z ," ." 

W b h .,JI«' Il)A ) 11+1/2' d d f: h 'n+I/2 • e 0 serve t at ~~ J + i2 Q.z, t - Sj +1/2. In cpcn cnl 0 t~ were Sj .. 1/2 IS 

obtained by evaluating the solution to the Riemann problem fot (3.1) along the 
ray {z - (j - 1/2)a.Z)/(r - til) - Q, with left and right states sj. S}+I_ Thus we 
obtain 

t (5.4) 5':+1 5': -a.f (.1.( 11+1/2) ,1.( n+1/2» (j 
J - j + /j.z 'Y Sj-I/l - Y; Sj+ 1/2 -

The scheme is first order accurate. and is stable if (a.!/ Llz) max) I I/t'(sj) 1:£ 1. 
We now restrict our example further. by assuming 1/I'(s) ~ 0, for all s. The 

solution to the Riemann problem at (z - (j - V2)a.Z)/U - tn) = 0 is always the 
left state. implying that sj::~~ = sj in (5.4). Thus Godunov's method in this 
situation reduces to upwind differencing. which is excessively dissipative. To 
obtain an algorithm with less dissipative error we replace the piecewise constant 
interpolation function (5.1) with one that is more accurate, and use the wave 
propagation properties of the equation to derive a difference scheme of the form 
(5.4). 

The simplest such interpolation function we might use is a piecewise linear 
interpolation function (Fig. 16) 

(5.5) ( 
") II t (z-ja.z) 

s z. t = S j + uS j a. z ' 

\ 
.fiI 
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I 

L, 

FIG. 16. 

where !JSj/ Az approximates dS /dZ I j~l' subject to some constraints described 
below. Unlike the case for the piecewise constant interpolant, it is difficult to 
solve the piecewise linear problem analytically. Consequently, the difference 
scheme for the piecewise linear case is derived by approximating the time 
integrals in (5.3). If we approximate them using the midpoint rule. we obtain 

11+ I At [ ; 
5j .... sj + Az ..J;(s:(() - 1/1)t:..z'it;-, + 1/2At» 

- 1/;(s;« j + V2)Az, t" + 1/2At»]. 

We then approximate the"value s:{(j - 1/2)Az, tn + I/2At) by using the fact that 
solutions to (3.1) are constant along characteristics. If we approximate the 
characteristic through «j~ + V2)tl=. (' + l/lilt) by the straight line (Fig. 17) 

{" . 
z(t) - (j..l+ V2)~Z + (I ~ (t + V2At»y;'(5j), 

t 
we obtain, using our interpolation function (5.5) 

S;«j + V2)Az. tn + '/21lt) .... s«j + V2)ilz - V2At l/;'(sj), til) 

- sj + ~ (1 -~ I//(sj) ) ~Sj 
Collecting the approximations, we obtain the difference scheme 

11+1 It AI (.1,( 1t+1/2) ( 11+1/2 ) 
5j = Sj + ~ 'Y 5j-1/2 - Y; Sj+1/2) • 

(5.6) 
Hill " 1 ( At In) 

Sj+I/2 = Sj +"2 1 - ilz Y; (Sj) OSjO 

To complete the specification of the scheme, we need to define OSj' It is defined 
in two steps. Firs!, we calculate a preliminary value tsj using a central difference 
formula, e.g., 1/20S} = S),-I -" Sj_1 (for other examples, see [11]. [35]), We then 
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t 

L. 
__ --.-____ --.----__ ,--___ --,-_ t"+ ~t 

'i:::' ,; · 1/22'h~~' "~d" "'o:'L 
Ij - l/2).6.z (j - 1/21.6.% Ii .. 1/21~1 

FlO. 17. 

obtain our final value for 5sj by constraining tr) to be within certain bounds. The 
purpose of the constraints is to prevent overshoots and undershoots at discontin
uities. For example. the dashed profile in Fig. 18 represents a piecewise linear 
interpolant for which the left extrapolated value is out of the range defined by the 
adjacent zone averages. In that case, the slope is reduced so that the extrapolated 
value lies just within range. as represented by the dotted line. Also. if a zone 
average is a local extremum, then 5s) is set'io zero. Expressed quantitatively. 
lhese constraints are given by 

! 
min(ISS)I. 2\sj+1 - s)l. 2\s) - $,_1 \) sign (S}+I - sl-l) 

(5.7) OSj - if (Sj-+I - Sj)(Sj - 5)_1) > 0, 

o otherwise. 

,In smooth par!s of the solution, these inequalities are already satisfied by tsjl 

so that {)Sj - os). With this choice of os}. it is not difficult to show that, if the 
solution is smooth, the scheme is formally second-order accurate. 
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A numerical comparison between the first-order and second·order Godunov 
methods is depicted in Figs. 19 and 20. For these problems s(z, t) "'" 1 for 
o ::; z ~ 0.2 and s(z. 0) = 0 for 0.2 < z ~ 1. The 'dashed curves represent the 
solution of (3.1) with ""(s) -/(s) = S2/(S2 + 0.5(l - S)2) and I1z = 0.02. The 
first order method is depicted in Fig. 19 and the second order one in Fig. 20. The 

1. 5 ...--~~....--.-~-.--.,.--.--.-'-....-..,...-----,--~---, 

1.0 

c 
0 

'';:; 

~ 0.5 
::J ..... 
co 

U) 

a 

-0.5 
a 0.2 0.4 0.6 0.8 1.0 

Distance 

FIG. 19. 

1.5 

1.0 

c 
0 

'';:; 
e 0.5 

\ ::;, 
+-' .: co 
(J) 

0 

-0.5 
0 0.2 0.4 0.6 0.8 1.0 

Distance 

FIG. 20, 

pl( 
le~ 

so 
ex 
ta 
Tl 
m, 

to 
la' 

(5 

Ir 
?f 
m 
sI= 
ar 
.'1 r 

~. 

c 

(5 

In 
ea 

(5 

Dl 
of 
r~ . 



dunov 
1 for 

nt the 
) The 
). The 

NUMERICAL METHODS FOR DISCONTINUOUS FLOWS 181 

plotting routine indicates the data points by placing circles below them, more or 
less tangent to the interpolating curve. The solid lines in the figures represent the 
solution for Az 0.0025 using the second order method, which is essentially the 
exact solution for this case (data points are not indicated). The time step At was 
taken to be 0.1 Az for all cases, which corresponds to a CFL number of about 0.2. 
The improvement in the solution using the second-order over the first-order 
method is easily seen for this problem. 

5.2. Systems of equations. We wish to extend the techniques described above 
to the case of the initial value problem for systems of hyperbolic conservation 
laws in one space variable 

au a F(U) -0 
at + az -, 

(5.8) 
U(z" I) - U:R x [0. T]- RN

, 

U(Z,O) - Uo(z) given. 

In porous flow problems~ U might be a vector of saturations, and F(U) the vector 
of associated fractional flows. The system is assumed to be hyperbolic. i.e., the 
matrix 'VuF - A(U) has N real eigenvalues A1(V) < .•. < AN(U) with corre
spunding left and right eigenvectors (II' r l), ... , (IN' rN)' Trese eigenvectors 
are linearly independent and biorthogonal, i.e., 11 • rj - 0 if it). If one expands 
an arbitrary vector W in terms of the rJc 's, then it follows from the biorthogonality 
property that the expansion coefficients are given by 

J 
1 \ 

i 

These eigenvectors and eigenvalues are used to describe the infinitesimal wave 
propagation properties of the system (5.8). The characteristic curves of (5.8) are 
curves in (z, I) satisfying the ordinary differential equations 

(5.9) k - 1" .• ,N. 

In regions where the solution is not discontinuous, a solution to (5.1) satisfies for 
each k an ordinary differential equation along the kth characteristic curve 

(5.10) k= 1, ••. ,N. 

Derivatives of the solution are transported along characteristics, the component 
of the derivative transported along the kth characteristic being proportional to 
rk' 
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As in the scalar case. we assume that Vj. the average value of the solution 
across a mesh interval. is known at time Iff 

Vj = 1 f (j+ '/2).1: U(z, tn)dz. 
tl.z (j - 1/2)~z 

We then wish to calculate vr I, the average value of the solution at time In + ~l. 
As in the scalar case above, we do so in the following three steps: (0 interpolate 
piecewise linear approximations to the solution at time In: (ii) use the wave 
propagation properties of the solution, in the form of Riemann problems and 
characteristic equations to find approximate values Uj: :~i to the solution at 
«j + '/2)tl.z, (' + '/2tl.t); and (iii) perform a conservative finite difference step to 
find Ur I. of the form 

(5.11 ) U~+I = U~ + ill (F (U~+I/2 ) - F (Un+ I / 2 » 
J J tl.z J-I/2 }-r 1/2 • 

Steps (i) and (ii) are at the heart of the method. In these two steps, we generalize 
the algorithm given above for scalar equations by applying it one mode of wave 
propagation at a time, using the characteristic equations (5.9), (5.10). Since the 
characteristic form of the equations breaks down at -hocks. care is required to 
guarant(~e that the algorithm reverts to something well-behaved near shocks. 

The interpolation st~p is a straightforward generalization of what was done in 
the scalar case, except that the constraints are imposed in characteristic 
variables. We first c.alculate the preliminary value for the slope fJUj -

1/2(Uj + 1 - U,_I)' We tben modify the slop:, using Harten's monotonicity algo. 
rithm for characteristh.,: variables [21]. We -!xpand 

!J 
I-

2 (Uj + 1 Vj ) - L a:rlc (Uj ). 
k-I 

N 

2 (Uj - ~_I) = LaIr" ([1;). 
';;-1 

N 

o~. - L akrk (V). 
Ie-I 

We then define 

"" _ { :in(1 aU, la: I, la, I) x sign (a,) if af· a: > 0, 

otherwise. 

The constrained slope is then given by 

Given these interpolated profiles, we can now calculate U;::~~. The difficulty 
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in calculating Vj;:;~ is that we want two rather different answers in two different 
limits.' In smooth parts of the solution we want Vn:;~ to satisfy a finite 
difference approximation to the characteristic form of the equations (5.9), 
(5.10), i.e., we want it to satisfy the N linear equations 

k - I.· .. tN, 

where Vj + 1/2.k is the value of the solution at the base of the kth characteristic and 
is given by 

j
un + ~ (1 - 6.1 At) OU· ifAk > 0, 

J 2 6.z J 

Vj + 1/2.1 = It 1 ( 6. ) 
V j + 1 - 2: I + Ll~ At oUj ifAk < O. 

I n the case for which (j + 1/2)6.z is inside a discontinuity, our interpolated profile 
may look like the profile in Fig. 21, due to the constraints on oV. In that case, we 
want our solution U;~ :~i to be given by the Riemann problem with left and right 
states corresponding to the jump at (j + lh)6.z. p'lus some perturbation repre
senting the slopes on either side. One algorithm for Vj: :~~ that has the 
appropriate behavior is given in [13] for gas d~\amics, but extends easily to this 
more general context. ... 

u 

• L, 
i 

• 
Ii 1/2)az (j ... lJ2).o.z. Ii'" 3J2)4z 

Flo. 21. 

We take Vj!:~~ to be the solution to the Riemann problem with left and right 
states ~""1/2.L' Uj + I / 2,R, given by 

(5.12) 
Vj+ 1/2.L Vj .... 1/2.L - Aj+ 1/2,L QUj , 

lin (he scalar results presented above. we avoided this problem by assuming "/(s) ;::; O. 

, , 
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Here U'j+l/2.L = Vj + 1/ll>Ujt Vj+l/2.R = V7+1 - Ij20Uj + l • and the operators 
Aj+ I/H. Aj+ 1/2.R are sums of the characteristic projection operators 

The vector Vj + 1/ 2•L (Vj + I / 2•R ) is equal to the left (right) limiting value of Vat 
«j+ 1/2)IlZ. t n

) plus the amount of wave of each family contained in bVj (5Uj + l ) 

that can reach (j + 1/2)D.z from the left (right) between time t n and In + V2At. If 
I oUj I, I oU)+ I I « I Vj - U}+ I It then it is clear from (5.) 2) that Vj; :~~ is given by a 
small perturbation of the solution to the Riemann problem. If the solution is 
smooth, then it is not difficult to show that V~::~~ approximates, to second order. 
a. solution to the characteristic equations (5.9), (5.10). This follows from the fact 
that, for weak waves, the solution to the Riemann problem reduces to transport 
a long characteristics. 

Throughout this discussion, we have assumed that thc Riemann problem for 
(5.1) could be easily solved. In fact, this has Qcen shown to bc the case for only a 
fcw of the systems of equations arising in lnultiphase flow in porous media [231. 
[34]. [35]. However, it is possible to introduce approximations into the solution 
of the Riemann problem without loss of accuracy, since much of the information 
in the Riemann problem is Jost in the conservative differencing step. In particu
lar, a class of Jpproximate S( lutions is proposed in [30], and an explicit 
constructive algorithm for such approximate solutions for general systems of 
conservation la ws is given in [12 J. This class of approximate solu tions is accura te 

t in two limiting cases: if aU the waves in the solution are weak, or if the solution 
consists of a single strong wave. For incompressible flow in porous media. these 
are the two most common situations since the magnitude and the direction in 
U-space of the jumps across waves are independent of the direction of propaga
tion of the wave. 
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